

Traffic Flow Patterns of the Future?

http://www.youtube.com/watch?v=KX46uhpAQaw

European SATRE Car Platoon Road Test

Basic Parameters for Understanding Stream Flow

Three basic classes of parameters

1. Spacing and Concentration
2. Headway and Flow
3. Speed

Spacing and Concentration

D

Spacing is the distance between vehicles, S

Concentration (or density) is the number of vehicles per unit length, k

$$
S(a v e)=1 / k
$$

Spacing and Concentration Example

D

If $D=1 / 10$ mile
What is the concentration, k ?
We have 4 vehicles in $1 / 10$ mile Therefore, the concentration is 40 vehicles/mile

What is the average spacing, s ?
$s=1 / k=1 / 40=0.025$ miles $=132$ feet

Spacing and Speed?

Spacing and Speed?

Spacing

Traffic Spacing in India

Headway and Flow

measurement point

Headway is the tilme between vehicles passing a specific location, h

Flow is the amount of vehicles passing a specific location in a specific time, q

$$
h_{(a v e)}=1 / q
$$

Headway and Flow Example

measurement point

If the total time for all the vehicles to cross the measurement points is $1 / 20$ hour, what is the flow per hour?

5 vehicles cross in 1/20 hour Flow, $q=100$ vehicles per hour

What is the average headway?
$h=1 / q=1 / 100=0.01$ hour $=36 \mathrm{sec}$

Space Parameters and Time Parameters?

Is there a relationship between the space parameters and the time parameters?

What links these two parameters?

Speed!

Measuring Average or Mean Speed

The average speed of vehicles in a traffic stream can be measured in a number of different ways.

Two common methods are used in transportation characterization

Time Mean Speed - is based on the spot speed of the vehicles passing a specific point

Space Mean Speed - is based on the average time it takes vehicles to cover a certain specified distance

Different traffic flow models use different definition of speed - some TMS and some SMS

Time Mean Speed is the Arithmetic Average of the Spot Speeds

measurement point

$$
\begin{aligned}
& \text { Time Mean Speed, } u_{t}=1 / n \sum V_{i} \\
&=(10+15+7.5) / 3=10.8 \mathrm{mph}
\end{aligned}
$$

Space Mean Speed

$D=1 / 2$ mile

Space Mean Speed is based on the average time

$$
\begin{aligned}
& t(\text { ave })=(t 1+t 2+t 3) / n \\
& =(3+2+4) / 3=3 \text { minutes }=\mathbf{1} / \mathbf{2 0} \text { hour }
\end{aligned}
$$

Space mean speed, $u_{s}=D / t($ ave $)$ $=(1 / 2) /(1 / 20)=10 \mathrm{mph}$

TMS versus SMS

$\mathbf{v}=10 \mathrm{mph}$
$\mathbf{v}=15 \mathrm{mph}$

```
v = 7.5 mph
```

Average speed measured by TMS and SMS is different even though the individual bike speed are exactly the same

Time Mean Speed, $u_{t}=1 / n \sum V_{i}$
Space mean speed, $U_{s}=D / t($ ave $)$

SMS

$\mathbf{v}=10 \mathrm{mph}$ $\mathbf{v}=15 \mathrm{mph}$ $\mathrm{v}=7.5 \mathrm{mph}$

Space mean speed, $u_{s}=D / t$ (ave) but, t (ave) $=1 / n \sum t_{i}$ and, $v_{i}=D / t_{i}$
>>> $t_{i}=D / v_{i}$
therefore, $u_{s}=D /\left\{1 / n \sum D / v_{i}\right\}$

$$
\begin{aligned}
& =D /\left\{D / n \sum 1 / v_{i}\right\} \\
& =1 /\left\{1 / n \sum 1 / v_{i}\right\}
\end{aligned}
$$

SMS is the Harmonic Average of the Spot Speeds

Space mean speed, $u_{s}=D / t$ (ave)

$$
=1 /\left\{1 / n \sum 1 / v_{i}\right\}
$$

$$
=1 /\left\{(1 / 3)^{*}[(1 / 10)+(1 / 15)+(1 / 7.5)]\right\}
$$

$$
\text { = } 10 \mathrm{mph}
$$

TMS and SMS

Time Mean Speed - is based on the spot speed of the vehicles passing a specific point

Space Mean Speed - is based on the average time it takes vehicles to cover a certain specified distance

Time Mean Speed, $u_{t}=1 / n \sum v_{i}$
Space mean speed, $u_{s}=1 /\left\{1 / n \sum 1 / v_{i}\right\}$

Relationship between Space and Time Parameters

$$
D=1 \text { mile }
$$

100 vehicles

What is the concentration?
$k=100$ vehicles/mile
What is the space?
$s=1 / k=1 / 100$ miles $=52.8$ feet
If the average speed $=10$ miles
What is the flow (q)?
Flow is total number of vehicles passing any point
Flow $=10 * 100=1000$ vehicles $/ \mathrm{hr}$
noboemeoses $q=u k$

