## Design Speed and Design

 Traffic Concepts

## Objectives

- Get familiar with design speeds for functional classes
- Describe traffic demand and determine for roadway design
- Define ADT, AADT, DHV, D, DDHV, K-Factor, and T
- Posted speed = speed limit
- Operating speed = free flow (spot speed)
- Running speed $=$ length of highway section $\div$ running time
- Design speed $=$ selected speed used to determine geometric design features


## Design Speed

- Design speed is defined by the AASHTO Green Book as: ...the maximum safe speed that can be maintained over a specified section of highway when conditions are so favorable that the design features of the highway govern.
- Design Speed should: 1) "...be consistent with the speed the driver is likely to expect." and 2) ". . .fit the travel desires and habits of nearly all drivers."
- Not posted speed and not operating speed (but ALWAYS higher than both)
- See first part of: http://www.fhwa.dot.gov/environment/flex/c h04.htm (Chapter 4 from FHWA's Flexibility in Highway Design)


## Design Speed Considerations

- Functional classification of the highway
- Character of the terrain
- Density and character of adjacent land uses
- Traffic volumes expected to use the highway
- Economic and environmental considerations


## Design Speed in Green Book

 (suggested minimum design speed) Rural Local Roads| Type of terrain | Metric |  |  |  |  |  | US Customary |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Design speed (km/h) for specified design volume (veh/day) |  |  |  |  |  | Design speed (mph) for specified design volume veh/day) |  |  |  |  |  |
|  | under 50 | $\begin{gathered} \hline 50 \\ \text { to } \\ 250 \end{gathered}$ | $\begin{gathered} 250 \\ \text { to } \\ 400 \end{gathered}$ | $\begin{gathered} \hline 400 \\ \text { to } \\ 1500 \end{gathered}$ | $\begin{gathered} 1500 \\ \text { to } \\ 2000 \end{gathered}$ | 2000 <br> and <br> over | under 50 | $\begin{gathered} 50 \\ \text { to } \\ 250 \end{gathered}$ | $\begin{gathered} \hline 250 \\ \text { to } \\ 400 \end{gathered}$ | $\begin{gathered} 400 \\ \text { to } \\ 1500 \end{gathered}$ | $\begin{gathered} 1500 \\ \text { to } \\ 2000 \end{gathered}$ | 2000 and over |
| Level | 50 | 50 | 60 | 80 | 80 | 80 | 30 | 30 | 40 | 50 | 50 | 50 |
| Rolling | 30 | 50 | 50 | 60 | 60 | 60 | 20 | 30 | 30 | 40 | 40 | 40 |
| Mountainous | 30 | 30 | 30 | 50 | 50 | 50 | 20 | 20 | 20 | 30 | 30 | 30 |

Exhibit 5-1. Minimum Design Speeds for Local Rural Roads

[^0]
## Design Speed in Green Book (suggested minimum design speed) <br> Rural Collectors

|  |  | Metric |  |  | Custo |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{r} \text { Des } \\ \text { specified } \end{array}$ | peed <br> gn vol | ) for (veh/day) | $\begin{array}{r} \text { Des } \\ \text { specified } \end{array}$ | $\begin{aligned} & \text { speed (n } \\ & \text { ign volur } \end{aligned}$ | $\begin{aligned} & \text { f for } \\ & \text { lveh/day) } \end{aligned}$ |
| Type of terrain | 0 to 400 | $\begin{aligned} & 400 \text { to } \\ & 2000 \\ & \hline \end{aligned}$ | over 2000 | 0 to 400 | $\begin{aligned} & \hline 400 \text { to } \\ & 2000 \\ & \hline \end{aligned}$ | over 2000 |
| Level | 60 | 80 | 100 | 40 | 50 | 60 |
| Rolling | 50 | 60 | 80 | 30 | 40 | 50 |
| Mountainous | 30 | 50 | 60 | 20 | 30 | 40 |
| Note: Where practical, design speeds higher than those shown should be considered. |  |  |  |  |  |  |

## Exhibit 6-1. Minimum Design Speeds for Rural Collectors

## Design Speed in Green Book (suggested minimum design speed)

Rural Arterials
60 - 120 kph (40-75 mph)
Depends on ...

- Terrain
- Driver expectancy
- Alignment (reconstruction)


# Design Speed in Green Book (suggested minimum design speed) 

Urban

- Locals 20-30 mph
- Collectors $30 \mathrm{mph}+$
- Arterials $30-60 \mathrm{mph}$

| Freeways | Design Speeds |  |  |
| :---: | :---: | :---: | :---: |
| Terrain | Rural | Urban |  |
| Flat | 70-80 | 70 |  |
| Rolling | 60-70 | 60-70 |  |
| Mountainous | 50-60 | 50-60 |  |
| Arterial Highways |  |  |  |
| Terrain | Rural | Urban | Values represent the |
| Flat | 60-70 | 30-60 | design speeds for the |
| Rolling | 40-60 | 30-50 | various conditions of terrain and traffic |
| Mountainous | 30-50 | 30-50 | volumes associated |
| Collector and Local Roads |  |  | with new or |
| Terrain | Rural | Urban | reconstructed highway facilities |
| Flat | 30-50 | 30-40 | highway facilies |
| Rolling | 20-40 | 20-40 |  |
| Mountainous | 20-30 | 20-30 |  |
| Source: Traffic Engineering Handbook (Fourth Edition), Institute of Transportation Engineers, Washington, DC, 1992, p. 156. Note: 1 mile/hr = $1.613 \mathrm{~km} / \mathrm{hr}$ |  |  |  |

## International



## Design Traffic

## Traffic Definitions

- Volume:
- number of vehicles, pedestrians, etc. passing a point during a specific period of time
for vehicles, usually expressed as veh/hour (vph) or veh/hour/lane (vphpl)
- Demand:

- number of vehicles, pedestrians, etc. that desire to travel between locations during a specific period
- Frequently higher than volume during certain peak times
- Trips are diverted or not made when there are constraints in the system
- difficult to measure actual demand because capacity constrains the demand
- Capacity:
- maximum number of vehicles that can pass a point during a specific period
- A characteristic of the roadway or facility


## Characteristics of Traffic Flow

- Highly variable
- Time of day
- Day of week
- Season
- Road characteristics

Direction

## Traffic Typically Peaks twice per day



Source: www.ecn.purdue.edu/~darcy

## Volume Studies

- AADT: Annual average daily traffic (counted for 365 days)
- ADT: average daily traffic (counted for > 1 day and < 365)
- PHV: peak hour volume
- Classification counts: fleet mix


## Estimating AADT

- Annual Average Daily Traffic
- Use count station information
- Extrapolate to non-count locations
- Used to adjust ADT for
- Seasons
- Daily variation


# AADT Data Helps to: 

- Estimate highway revenues

■ Establish overall volume trends

- Establish annual accident rates
- Analyze benefits of road improvements


## Counting Program

- To satisfy the traffic volume data needs for all roads under a particular jurisdiction, we establish a Counting Program


# A systematic pattern of counting at different times and locations 

## Traffic Counts Maps



## Traffic Counts Maps

 HAMILTON CO. R-24W

## Design Volume

■ Usually hourly volume

- Which hour?
- Average hourly volume - inadequate design
- Maximum peak hour - not economical
- Hourly volume used for design should not be exceeded very often or by very much
- Usually use $30^{\text {th }}$ highest hourly volume of the year
- On rural roads 30 HHV is ~ 15\% of ADT
- Tends to be constant year to year


## Traffic Demand

- Design Hourly Volume (DHV) - future hourly volume (both directions) used for design - typically $30^{\text {th }} \mathrm{HHV}$ (highest hourly volume) in the design year
- Why 30th HHV?

Breakpoint of 2-28
Compromise: too high is wasteful, too low poor operation
Approximately median weekly peak hour volume (top highest week peak hours)
(30th HHV exceed 29 times in year)

## Traffic Demand (cont.)

3. Exhibit 2-28 relationship between HHV and percent of ADT in peak hour (referred to as K-factor)


Source: A Policy on
Geometric Design of
Highways and Streets
(The Green Book)
Washington, DC.
American Association of
State Highway and
Transportation Officials, $20014^{\text {th }}$ Ed

# Design Hourly Volume 

DHV is a representation of peak hour traffic, usually for the future, or horizon year

K-factor represents proportion of AADT that occurs in the $30^{\text {th }} \mathrm{HHV}$
$K$-factor $=\frac{\text { DHV }}{\text { AADT }} \times 100$
$\mathrm{K}=8$ to $12 \%$ urban, 12 to $18 \%$ rural

# Design Hourly Volume (Example) 

If AADT is 3500 vpd and the $30^{\text {th }}$ highest hourly volume for the year is 420 vph what is the K-factor for that facility?

$$
\begin{aligned}
& \text { K-factor }=\frac{\text { DHV }}{\text { AADT }} \times 100 \\
& \text { K-factor }=\frac{420}{3500} \times 100=\underline{12}
\end{aligned}
$$

Question: What's the impact of choosing different K factor for design?

If AADT is 3500 vpd , how will the design volume differ for K -factor $=8 \%$ vs. $12 \%$ ?

DHV $=\frac{k \text {-factor } \times \text { AADT }}{100}$
$\mathrm{DHV}_{\mathrm{k}=8 \%}=\frac{8 \times 3500}{100}=280 \mathrm{vph}$
$D H V_{k=12 \%}=\frac{12 \times 3500}{100}=420 \mathrm{vph} \quad \frac{\text { (diff of } 140}{\text { veh })}$

## Traffic Demand (cont.)

- $\mathrm{D}=$ directional distribution $=$ one way volume in peak direction (expressed as a percentage of two-way traffic) Rural 55 to 80\%
- Can also adjust for how traffic is distributed between lanes (e.g., 3 lanes, highest/outside Iane may be $40 \%$ of total directional flow)


## Directional Distribution (example)

If traffic is directionally split 60/40, what is directional distribution of traffic for previous example (Design hourly volume $=420$ veh/hr)?

Directional Design Hourly Volume $($ DDHV $)=$

$$
0.6 \times 420=\underline{252 \mathrm{veh} / \mathrm{hr}}
$$

Notice we use 0.6 not 0.4 !!

## Traffic Demand (cont.)

- $\mathrm{T}=$ percentage of heavy vehicles during design hour (Iowa interstate 35\% plus)
- Affects capacity, ability to pass on two-lane rural roads, etc.
- Larger, occupy more space
- Should determine \% during design hour (truck patterns may not be same as passenger vehicles)


# Peak Hour Factor (PHF) PHF = __ peak-hour volume 4(peak 15-min volume) 

Flow is not uniform throughout an hour HCM considers operating conditions during most congested 15 -minute period of the hour to determine service level for the hour as a whole

## Peak Hour Factor



## DHV = Peak-Hour Volume PHF

## Example

Peak hour volume from previous $=375$ vph
PHF $=0.625$
DHV $=\frac{375}{0.625}=\mathbf{6 0 0} \mathbf{~ v p h}$
Note: the traffic you design for is the busiest 15 minutes during the peak hour ... another way to think of it is 150 vehicles per 15 minutes $=600$ vehicles per 60 minutes


[^0]:    Source: A Policy on Geometric
    Design of Highways and Streets
    (The Green Book). Washington, DC.
    American Association of State
    Highway and Transportation
    Officials, $20014^{\text {th }}$ Ed.

