Design Speed and Design Traffic Concepts

Objectives

- Get familiar with design speeds for functional classes
- Describe traffic demand and determine for roadway design
- Define ADT, AADT, DHV, D, DDHV, K-Factor, and T

- Posted speed = speed limit
- Operating speed = free flow (spot speed)
- Running speed = length of highway section ÷ running time
- Design speed = selected speed used to determine geometric design features

Design Speed

- Design speed is defined by the AASHTO Green Book as: ...the maximum safe speed that can be maintained over a specified section of highway when conditions are so favorable that the design features of the highway govern.
- Design Speed should: 1) "...be consistent with the speed the driver is likely to expect." and 2) ". . .fit the travel desires and habits of nearly all drivers."
- Not posted speed and not operating speed (but ALWAYS higher than both)
- See first part of: <u>http://www.fhwa.dot.gov/environment/flex/c</u> <u>h04.htm</u> (Chapter 4 from FHWA's Flexibility in Highway Design)

Design Speed Considerations

- Functional classification of the highway
- Character of the terrain
- Density and character of adjacent land uses
- Traffic volumes expected to use the highway
- Economic and environmental considerations

Design Speed in Green Book

(suggested minimum design speed)

Rural Local Roads

	Metric Design speed (km/h) for						US Customary					
							Design speed (mph) for					
	specified design volume (veh/day)					specified design volume (veh/day)						
		50	250	400	1500	2000		50	250	400	1500	2000
Type of	under	to	to	to	to	and	under	to	to	to	to	and
terrain	50	250	400	1500	2000	over	50	250	400	1500	2000	over
Level	50	50	60	80	80	80	30	30	40	50	50	50
Rolling	30	50	50	60	60	60	20	30	30	40	40	40
Mountainous	30	30	30	50	50	50	20	20	20	30	30	30

Exhibit 5-1. Minimum Design Speeds for Local Rural Roads

Source: A Policy on Geometric Design of Highways and Streets (The Green Book). Washington, DC. American Association of State Highway and Transportation Officials, 2001 4th Ed.

Design Speed in Green Book (suggested minimum design speed)

Rural Collectors

Г				Metric		US Customary			
l			-	n speed (km	,	Design speed (mph) for			
١,			specified d	esign volum	ie (veh/day)	specified	design volume	(veh/day)	
ı	Type of			400 to		-	400 to		
L	terrain	0	to 400	2000	over 2000	0 to 400	2000	over 2000	
Γ	.evel		60	80	100	40	50	60	
F	Rolling		50	60	80	30	40	50	
Ν	/lountainous		30	50	60	20	30	40	

lote: Where practical, design speeds higher than those shown should be considered.

Exhibit 6-1. Minimum Design Speeds for Rural Collectors

Source: A Policy on Geometric Design of Highways and Streets (The Green Book). Washington, DC. American Association of State Highway and Transportation Officials, 2001 4th Ed.

Design Speed in Green Book

(suggested minimum design speed)

Rural Arterials

- 60 120 kph (40-75 mph)
- Depends on ...
 - Terrain
 - Driver expectancy
 - Alignment (reconstruction)

Design Speed in Green Book

(suggested minimum design speed)

Urban

- Locals 20-30 mph
- Collectors 30 mph+
- Arterials 30-60 mph

١.				
	Freeways	С	Design Speeds	
	Terrain	Rural	Urban	
	Flat	70-80	70	
	Rolling	60-70	60-70	
	Mountainous	50-60	50-60	
		Arterial Highways	3	
	Terrain	Rural	Urban	Values represent the
	Flat	60-70	30-60	minimum acceptable design speeds for the
	Rolling	40-60	30-50	various conditions of terrain and traffic
	Mountainous	30-50	30-50	volumes associated
		Collector and Local R	oads	with new or
	Terrain	Rural	Urban	reconstructed highway facilities
	Flat	30-50	30-40	riigitway racincies
	Rolling	20-40	20-40	
	Mountainous	20-30	20-30	

Source: Traffic Engineering Handbook (Fourth Edition), Institute of Transportation Engineers, Washington, DC, 1992, p. 156. Note: 1 mile/hr = 1.613 km/hr

International

United Nations Economic and Social Commission for Asia and the Pacific Transport and Tourism Division

Transport, Communications, Tourism and Infrastructure Development (TCTID) Division

Home | Meetings | Seoul 2001 | New Delhi '96 | Publications | Data | Search | Site Index | Contact | Legal Note

UN > UN ESCAP > TCTID Division > Land Transport > Asian Highway > AH standards >

Asian Highwa

Introduction Background History Current status

ESCAP activities Route maps Tourism along AH AH database AH publications AH photo gallery

Land Transpor

New Projects Publications

ALTID Asian Highway Trans-Asian Railway Container Dem. Northern Corrid.

Sustainable Road Maintenance Road Transport and Environment Road Safety Railway level

Design speed (Asian Highway Design Standards)

[Terrain Classification | Vertical Alignment | Design speed | Pavement | Cross section | Structure loading | Horizontal alignment | Vertical Clearance]

Design speed of 120, 100, 80, 60, 50, 40, and 30 kilometers per hour shall be used as indicated in the following table. Design speed of 120 km/h shall be used only for Primary class (access controlled motorways) which have median strips and grade separated interchanges.

Table: Design Speed, Highway Classification and Terrain Classification (km/hour)

Terrain	Primary	Class I	Class Ⅱ	Class Ⅲ
Level (L)	120	100	80	60
Rolling (R)	100	80	60	50
Mountainous (M)	80	60	50	40
Steep (S)	60	60	40	30

Design Traffic

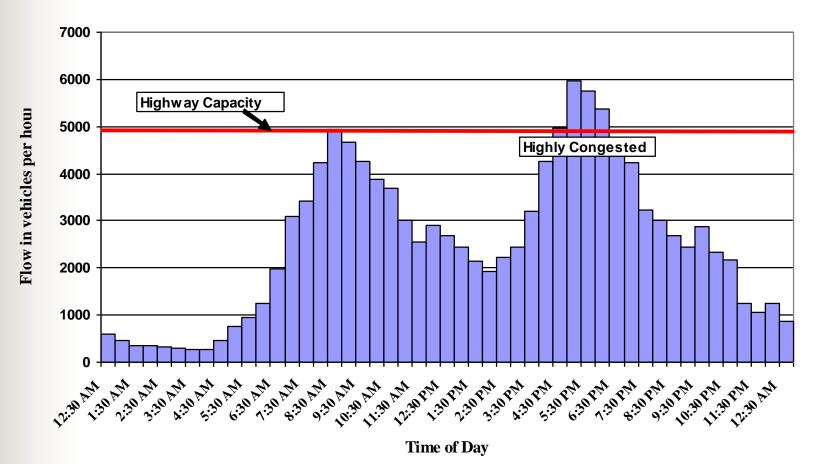
Traffic Definitions

Volume:

- number of vehicles, pedestrians, etc. passing a point during a specific period of time
- for vehicles, usually expressed as veh/hour (vph) or veh/hour/lane (vphpl)

Demand:

- number of vehicles, pedestrians, etc. that desire to travel between locations during a specific period
- Frequently higher than volume during certain peak times
- Trips are diverted or not made when there are constraints in the system
- difficult to measure actual demand because capacity constrains the demand


Capacity:

- maximum number of vehicles that can pass a point during a specific period
- A characteristic of the roadway or facility

Characteristics of Traffic Flow

- Highly variable
 - Time of day
 - Day of week
 - Season
 - Road characteristics
 - Direction

Traffic Typically Peaks twice per day

Source: www.ecn.purdue.edu/~darcy

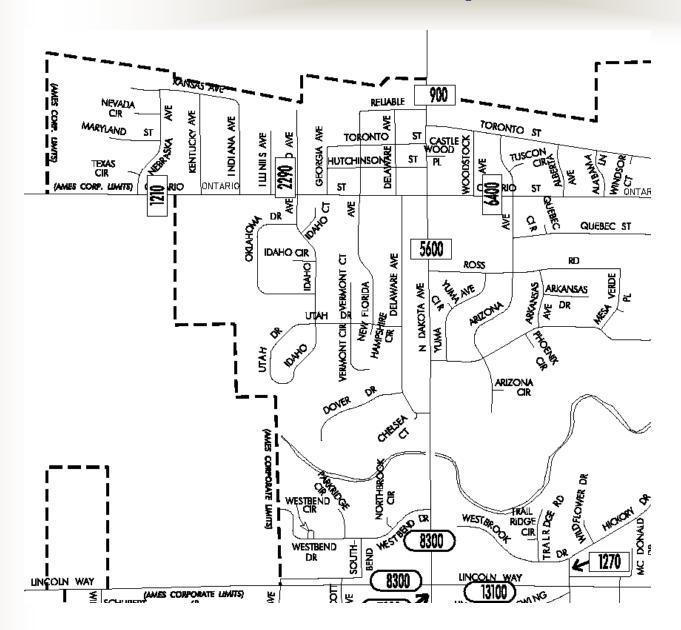
Volume Studies

- AADT: Annual average daily traffic (counted for 365 days)
- ADT: average daily traffic (counted for > 1 day and < 365)
- PHV: peak hour volume
- Classification counts: fleet mix

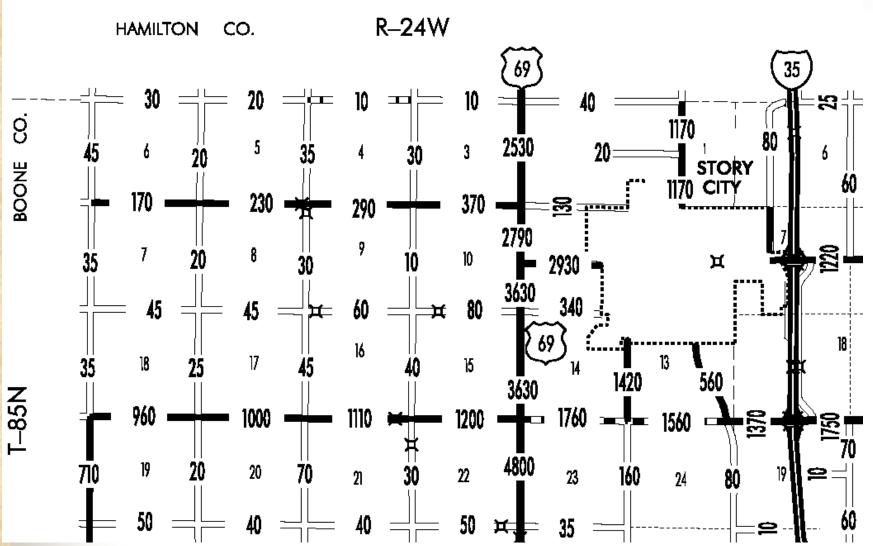
Estimating AADT

- Annual Average Daily Traffic
- Use count station information
- Extrapolate to non-count locations
- Used to adjust ADT for
 - Seasons
 - Daily variation

AADT Data Helps to:


- Estimate highway revenues
- Establish overall volume trends
- Establish annual accident rates
- Analyze benefits of road improvements

Counting Program


 To satisfy the traffic volume data needs for all roads under a particular jurisdiction, we establish a Counting Program

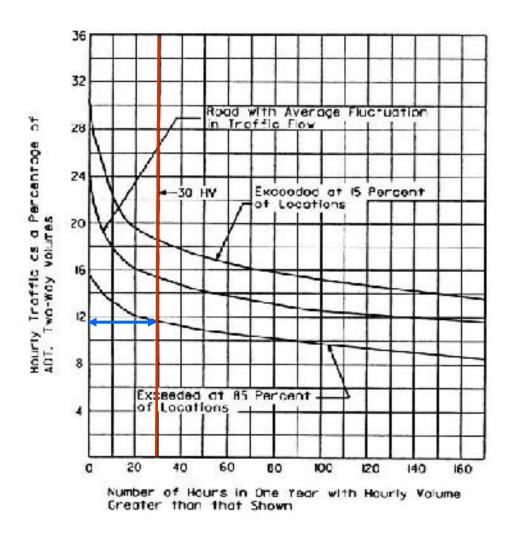
A systematic pattern of counting at different times and locations

Traffic Counts Maps

Traffic Counts Maps

Design Volume

- Usually hourly volume
- Which hour?
 - Average hourly volume inadequate design
 - Maximum peak hour not economical
 - Hourly volume used for design should not be exceeded very often or by very much
 - Usually use 30th highest hourly volume of the year
 - On rural roads 30 HHV is ~ 15% of ADT
 - Tends to be constant year to year


Traffic Demand

- Design Hourly Volume (DHV) future hourly volume (both directions) used for design - typically 30th HHV (highest hourly volume) in the design year
- Why 30th HHV?
 - Breakpoint of 2-28
 - Compromise: too high is wasteful, too low poor operation
 - Approximately median weekly peak hour volume (top highest week peak hours)

(30th HHV exceed 29 times in year)

Traffic Demand (cont.)

3. Exhibit 2-28 relationship between HHV and percent of ADT in peak hour (referred to as K-factor)

Source: A Policy on Geometric Design of Highways and Streets (The Green Book). Washington, DC. American Association of State Highway and Transportation Officials, 2001 4th Ed.

Design Hourly Volume

DHV is a representation of peak hour traffic, usually for the future, or horizon year

K-factor represents proportion of AADT that occurs in the 30th HHV

Design Hourly Volume (Example)

If AADT is 3500 vpd and the 30th highest hourly volume for the year is 420 vph what is the K-factor for that facility?

K-factor =
$$\underline{DHV}$$
 x 100
AADT
K-factor = $\underline{420}$ x 100 = $\underline{12}$
3500

Question: What's the impact of choosing different K factor for design?

If AADT is 3500 vpd, how will the design volume differ for K-factor = 8% vs. 12%?

DHV = K-factor x AADT 100
$$100$$

$$DHV_{k=8\%} = 8 \times 3500 = 280 \text{ vph}$$

$$100$$

$$DHV_{k=12\%} = 12 \times 3500 = 420 \text{ vph}$$
 (diff of 140 veh)

Traffic Demand (cont.)

- D = directional distribution = one way volume in peak direction (expressed as a percentage of two-way traffic) Rural 55 to 80%
- Can also adjust for how traffic is distributed between lanes (e.g., 3 lanes, highest/outside lane may be 40% of total directional flow)

Directional Distribution (example)

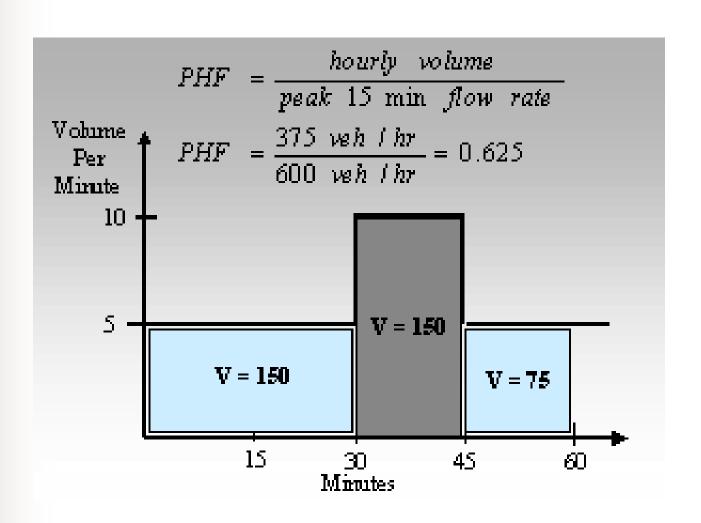
If traffic is directionally split 60/40, what is directional distribution of traffic for previous example (Design hourly volume = 420 veh/hr)?

Directional Design Hourly Volume (DDHV) =

 $0.6 \times 420 = 252 \text{ veh/hr}$

Notice we use 0.6 not 0.4!!

Traffic Demand (cont.)


- T = percentage of heavy vehicles during design hour (Iowa interstate 35% plus)
- Affects capacity, ability to pass on two-lane rural roads, etc.
- Larger, occupy more space
- Should determine % during design hour (truck patterns may not be same as passenger vehicles)

Peak Hour Factor (PHF)

PHF = <u>peak-hour volume</u> 4(peak 15-min volume)

Flow is not uniform throughout an hour HCM considers operating conditions during most congested 15-minute period of the hour to determine service level for the hour as a whole

Peak Hour Factor

DHV = <u>Peak-Hour Volume</u> PHF

Example

Peak hour volume from previous = 375 vph

PHF = 0.625DHV = 375 = 600 vph0.625

Note: the traffic you design for is the busiest 15 minutes during the peak hour ... another way to think of it is 150 vehicles per 15 minutes = 600 vehicles per 60 minutes