Capacity Analysis

Objectives

- Review LOS definition and determinants
- Define capacity and relate to "ideal" capacities
- Review calculating capacity using HCM procedures for basic freeway section
Focus on relations between capacity, level-of-service, and design

Level of Service (LOS)

- Concept - a qualitative measure describing operational conditions within a traffic stream and their perception by drivers and/or passengers
- Levels represent range of operating conditions defined by measures of effectiveness (MOE)

LOS A (Freeway)

- Free flow conditions
- Vehicles are unimpeded in their ability to maneuver within the traffic stream
- Incidents and breakdowns are
 easily absorbed
- Flow reasonably free

LOS B

- Ability to maneuver is slightly restricted
- General level of physical and psychological comfort provided to drivers is high
- Effects of incidents
 and breakdowns are easily absorbed
- Flow at or near FFS
- Freedom to maneuver is noticeably restricted
- Lane changes more difficult
- Minor incidents will be absorbed, but will cause deterioration in service
- Queues may form behind significant blockage
- Speeds begin to decline with increasing flow
- Freedom to maneuver is noticeably limited
- Drivers experience physical and psychological discomfort
- Even minor incidents cause queuing, traffic stream cannot absorb disruptions
- Capacity
- Operations are volatile,

LOS E

 virtually no usable gaps- Vehicles are closely spaced
- Disruptions such as lane changes can cause a disruption wave that propagates throughout the upstream traffic flow
- Cannot dissipate even minor disruptions, incidents will cause breakdown

- Breakdown or forced flow
- Occurs when:
- Traffic incidents cause a temporary reduction in capacity
- At points of recurring congestion, such as merge or weaving segments
- In forecast situations, projected
 flow (demand) exceeds estimated capacity

Design Level of Service

This is the desired quality of traffic conditions from a driver's perspective (used to determine number of lanes)

- Design LOS is higher for higher functional classes
- Design LOS is higher for rural areas
- LOS is higher for level/rolling than mountainous terrain
- Other factors include: adjacent land use type and development intensity, environmental factors, and aesthetic and historic values
- Design all elements to same LOS (use HCM to analyze)

Design Level of Service (LOS)

| | Type of Area and Appropriate Level of Service | | | |
| :--- | :--- | :---: | :--- | :--- | :---: |
| Highway
 Type | Rural
 Level | Rural
 Rolling | Rural
 Mountainous | Urban and
 Suburban |
| Freeway | B | B | C | C |
| Arterial | B | B | C | C |
| Collector | C | C | D | D |
| Local | D | D | D | D |

Source: Adapted from the AASHTO Green Book

Capacity - Defined

- Capacity: Maximum hourly rate of vehicles or persons that can reasonably be expected to pass a point, or traverse a uniform section of lane or roadway, during a specified time period under prevailing conditions (traffic and roadway)
- Different for different facilities (freeway, multilane, 2-lane rural, signals)
- Why would it be different?

Ideal Capacity

- Freeways: Capacity (Free-Flow Speed)
2,400 pcphpl (70 mph)
2,350 pcphpl (65 mph)
2,300 pcphpl (60 mph)
2,250 pcphpl (55 mph)
- Multilane

Suburban/Rural

2,200 pcphpl (60 mph)
2,100 (55 mph)
2,000 (50 mph)
1,900 (45 mph)

- 2-lane rural-2,800 pcph
- Signal - 1,900 pcphgpl

Principles for Acceptable Degree of Congestion:

1. Demand $s=$ capacity, even for short time
2. 75-85\% of capacity at signals
3. Dissipate from queue @ 1500-1800 vph
4. Afford some choice of speed, related to trip length
5. Freedom from tension, esp long trips, < 42 veh/mi.
6. Practical limits - users expect lower LOS in expensive situations (urban, mountainous)

Multilane Highways

- Chapter 21 of the Highway Capacity Manual
- For rural and suburban multilane highways
- Assumptions (Ideal Conditions, all other conditions reduce capacity):
- Only passenger cars
- No direct access points
- A divided highway
- FFS > 60 mph
- Represents highest level of multilane rural and suburban highways

Base Conditions

- 1. 12-ft lane widths
- 2. A minimum of 12 ft of total lateral clearance in the direction of travel. Clearances are measured from the edge of the traveled lanes (shoulders included) and of 6 ft or greater are considered to be equal to 6 ft
- 3. No direct access points along the highway
- 4. A divided highway
- 5. Only passenger cars in the traffic stream
- 6. A free-flow speed of 60 mph or more
- 7. Driver population consisting primarily of commuters

Multilane Highways

- Intended for analysis of uninterruptedflow highway segments
, Signal spacing > 2.0 miles
- No on-street parking
- No significant bus stops
- No significant pedestrian activities

EXhibit 21-1. Multilane highway Methodology

Source: HCM, 2000

The prediction of level of service for a multilane highway involves three steps:
-1. Determination of free-flow speed
-2. Adjustment of volume

- 3. Determination of level of service

		LOS				
Free-Flow Speed	Criteria	A	B	C	D	E
$60 \mathrm{mi} / \mathrm{h}$	Maximum density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)	11	18	26	35	40
	Average speed (mi/h)	60.0	60.0	59.4	56.7	55.0
	Maximum volume to capacity ratio (V / c)	0.30	0.49	0.70	0.90	1.00
	Maximum service flow rate ($\mathrm{pc} / \mathrm{h} / \mathrm{ln}$)	660	1080	1550	1980	2200
$55 \mathrm{mi} / \mathrm{h}$	Maximum density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)	11	18	26	35	41
	Average speed (mi/h)	55.0	55.0	54.9	52.9	51.2
	Maximum v/c	0.29	0.47	0.68	0.88	1.00
	Maximum service flow rate ($\mathrm{pc} / \mathrm{h} / \mathrm{ln}$)	600	990	1430	1850	2100
$50 \mathrm{mi} / \mathrm{h}$	Maximum density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)	11	18	26	35	43
	Average speed (mi/h)	50.0	50.0	50.0	48.9	47.5
	Maximum v/c	0.28	0.45	0.65	0.86	1.00
	Maximum service flow rate ($\mathrm{pc} / \mathrm{h} / \mathrm{ln}$)	550	900	1300	1710	2000
$45 \mathrm{mi} / \mathrm{h}$	Maximum density ($\mathrm{pc} / \mathrm{mi} / \mathrm{ln}$)	11	18	26	35	45
	Average speed (mi/h)	45.0	45.0	45.0	44.4	42.2
	Maximum v/c	0.26	0.43	0.62	0.82	1.00
	Maximum service flow rate ($\mathrm{pc} / \mathrm{h} / \mathrm{ln}$)	490	810	1170	1550	1900

Note:
The exact mathematical relationship between density and volume to capacity ratio (v / c) has not always been maintained at LOS boundaries because of the use of rounded values. Density is the primary determinant of LOS. LOS F is characterized by highly unstable and variable traffic flow. Prediction of accurate flow rate, density, and speed at LOS F is difficult.

ESTIMATING FFS

The FFS can be estimated indirectly when field data are not available.

$$
F F S=B F F S-f_{L W}-f_{L C}-f_{M}-f_{A}
$$

where
BFFS = base FFS (mi/h);
FFS $=$ estimated FFS (mi / h);
$f_{L W}=$ adjustment for lane width, from Exhibit 21-4 (mi/h);
$f_{L C}=$ adjustment for lateral clearance, from Exhibit 21-5 (mi/h);
$f_{M}=$ adjustment for median type, from Exhibit 21-6 (mi/h); and
$f_{A}=$ adjustment for access points, from Exhibit 21-7 (mi/h).

Base Free-flow speed also can be estimated from:
1- 85th-percentile speed

2- posted speed limits,
if it is not possible to measure directly in the field.

BFFS $=85 \%$ Speed $-(1: 3) \mathrm{mph}$ (if $85 \%=40-60 \mathrm{mph}$)

BFFS = Speed Limit +7 mph (if speed limit $=40-50 \mathrm{mph}$)

BFFS = Speed Limit + 5 mph (if speed limit $=50-55 \mathrm{mph}$)

Lane Width

- Base Conditions: 12 foot lanes

EXHIBIT 21-4. ADJUSTMENT FOR LANE WIDTH

Lane Width (ft)	Reduction in FFS (mi/h)
12	0.0
11	1.9
10	6.6

Source: HCM, 2000

Lane W/idi's (Example)

EXHIBIT 21-4. ADJUSTMENT FOR LANE WIDTH

Lane Width (ft)	Reduction in FFS (mi/h)
12	0.0
11	1.9
	10

How much does use of 10-foot lanes decrease
free flow speed?
$\underline{\mathrm{F}}_{\mathrm{lw}}=6.6 \mathrm{mph}$
Source: HCM, 2000

Lateral Clearance

- Distance to fixed objects
- Assumes
- $>=6$ feet from right edge of travel lanes to obstruction
- $\lambda=6$ feet from left edge of travel lane to object in median

Lateral Clearance

$T L C=L C_{R}+L C_{L}$

TLC = total lateral clearance in feet
$L C_{R}=$ lateral clearance from right edge of travel lane
$L C_{L}=$ lateral clearance from left edge of travel lane

EXHIIIT 21-5. AdJustment for Lateral Clearance

Four-Lane Highways		Six-Lane Highways	
Total Lateral Clearance ${ }^{\text {a }}$ (ft)	Reduction in FFS (mi/h)	Total Lateral Clearance ${ }^{\text {a }}$ (t)	Reduction in FFS (mi/
12	0.0	12	0.0
10	0.4	10	0.4
8	0.9	8	0.9
6	1.3	6	1.3
4	1.8	4	1.7
2	3.6	2	2.8
0	5.4	0	3.9
Note: a. Total lateral clearance is the than 6 ft , use 6 ft . Therefore	m of the lateral clearances purposes of analysis, total	he median (if greater than 6 fl, ral clearance cannot exceed	se 6 ft) and shoulder (if gr t.

EXHIBIT 21-5. ADJustment FOR LATERAL CLEARANCE

Four-Lane Highways		Six-Lane Highways	
Total Lateral Clearance ${ }^{\text {a }}$ (ft)	Reduction in FFS (mi/h)	Total Lateral Clearance ${ }^{\mathrm{a}}$ (t)	Reduction in FFS (mi/
12	0.0	12	0.0
10	0.4	10	0.4
8	0.9	8	0.9
6	1.3	6	1.3
4	1.8	4	1.7
2	3.6	2	2.8
0	5.4	0	3.9

Note:
a. Total lateral clearance is the sum of the lateral clearances of the median (if greater than 6 ft , use 6 ft) and shoulder (if gr than 6 ft , use 6 ft$)$. Therefore, for purposes of analysis, total lateral clearance cannot exceed 12 ft .

Example: Calculate lateral clearance adjustment for a 4-lane divided highway with milepost markers located 4 feet to the right of the travel lane.

$$
\mathrm{TLC}=\mathrm{LC}_{\mathrm{R}}+\mathrm{LC}_{\mathrm{L}}=6+4=10
$$

$\mathrm{F}_{\mathrm{lc}}=0.4 \mathrm{mph}$

EXHIBIT 21-6. AdJuSTMENT FOR MEDIAN TYPE

Median Type	Reduction in FFS (mi/h)
Undivided highways	1.6
Divided highways (including TWLTLs)	0.0

f_{m} : Accounts for friction between opposing directions of traffic in adjacent lanes for undivided

No adjustment for divided, $f_{m}=1$

Source: HCM, 2000

EXhibit 21-7. ACCESS-Point Density Adjustment

Access Points/Mile	Reduction in FFS (mi/h)
0	0.0
10	2.5
20	5.0
30	7.5
≥ 40	10.0

F_{a} accounts for interruption due to access points along the facility

Example: if there are 20 access points per mile, what is the reduction in free flow speed?
$\underline{\mathrm{F}}_{\mathrm{a}}=5.0 \mathrm{mph}$

Default Access-Point Density

Development Type	Default Value	Access Points/mi (One Side)
Rural	8	$0-10$
Low-density suburban	16	$11-20$
High-density suburban	25	≥ 21
Source: TRB, 2000.		

Source: HCM, 2000

Calculate Flow Rate

$$
v_{p}=\frac{V}{P H F{ }^{*} N^{*} f_{H V}{ }^{*} f_{p}}
$$

where

$$
\begin{aligned}
v_{p} & =15-\mathrm{min} \text { passenger-car equivalent flow rate }(\mathrm{pc} / \mathrm{h} / \mathrm{ln}), \\
V & =\text { hourly volume }(\mathrm{veh} / \mathrm{h}), \\
P H F & =\text { peak-hour factor, } \\
N & =\text { number of lanes, } \\
f_{H V} & =\text { heavy-vehicle adjustment factor, and } \\
f_{p} & =\text { driver population factor. }
\end{aligned}
$$

Peak Hour Factor (PHF)

$$
\mathrm{PHF}=\frac{\text { peak-hour volume }}{4(\text { peak } 15-\mathrm{min} \text { volume })}
$$

Flow is not uniform throughout an hour HCM considers operating conditions during most congested 15-minute period of the hour to determine service level for the hour as a whole

Peak Hour Factor

Heavy Vehicle Adjustment

- Heavy vehicles affect traffic
- Slower, larger
- $f_{h v}$ increases number of passenger vehicles to account for presence of heavy trucks

$$
f_{H V}=\frac{1}{1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)}
$$

where

$$
\left.\begin{array}{rl}
E_{T}, E_{R}= & \text { passenger-car equivalents for trucks and buses and for recreational } \\
& \text { vehicles }(\mathrm{RVs}), \text { respectively; }
\end{array}\right\}
$$

$f(h v)$ General Grade Definitions:

- Level: combination of alignment (horizontal and vertical) that allows heavy vehicles to maintain same speed as pass. cars (includes short grades 2% or less)
- Rolling: combination that causes heavy vehicles to reduce speed substantially below P.C. (but not crawl speed for any length)
- Mountainous: Heavy vehicles at crawl speed for significant length or frequent intervals
Use specific grade approach if grade less than 3% is more than $\frac{1}{2}$ mile or grade more than 3% is more than $\frac{1}{4}$ mile)

EXHIBIT 21-8. PASSENGER-CAR EQUIVALENTS ON EXTENDED GENERAL HIGHWAY SEGMENTS

Factor	Type of Terrain		
	Level	Rolling	Mountainous
E_{T} (trucks and buses)	1.5	2.5	4.5
$\mathrm{E}_{\mathrm{R}}(\mathrm{RV}$)	1.2	2.0	4.0

Example: for 10% heavy trucks on rolling terrain, what is F_{hv} ?

For rolling terrain, $\mathrm{E}_{\mathrm{T}}=2.5$

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{hv}}=\frac{1}{1+0.1(2.5-1)}= \underline{0.87} \\
& f_{H V}=\frac{1}{1+P_{T}\left(E_{T}-1\right)+P_{R}\left(E_{R}-1\right)}
\end{aligned}
$$

Driver Population Factor $\left(f_{p}\right)$

- Non-familiar users affect capacity
- $f_{p}=1$, familiar users
- $1>f_{p}>=0.85$, unfamiliar users

- Calculate vp

$$
v_{p}=\frac{V}{P H F{ }^{*} N^{*} f_{H V}{ }^{*} f_{p}}
$$

- Excassple: base volume is 2,500 veh/hour
- PHF $=0.9, \mathrm{~N}=2$
- $f_{h v}$ from previous, $f_{h v}=0.87$
- Non-familiar users, $f_{p}=0.85$

$$
\mathrm{v}_{\mathrm{p}}=\frac{2.500 \mathrm{vph}}{0.9 \times 2 \times 0.87 \times 0.85}=1878 \mathrm{pc} / \mathrm{ph} / \mathrm{pl}
$$

Calculate Density

$$
\begin{equation*}
D=\frac{v_{p}}{S} \tag{21-5}
\end{equation*}
$$

where

$$
\begin{aligned}
D & =\text { density }(\mathrm{pc} / \mathrm{mi} / \mathrm{ln}) \\
v_{p} & =\text { flow rate }(\mathrm{pc} / \mathrm{h} / \mathrm{ln}), \text { and } \\
S & =\text { average passenger-car travel speed }(\mathrm{mi} / \mathrm{h}) .
\end{aligned}
$$

Example: for previous

$$
\mathrm{D}=\frac{1878 \mathrm{vph}}{48 \mathrm{mph}}=39.1 \mathrm{pc} / \mathrm{mi} / \mathrm{lane}
$$

EXHIBIT 21-3. SPEED-FLOW CURVES WITH LOS CRITERAA $\mathbf{L O S}=\mathbf{E}$

Also, $D=39.1 \mathrm{pc} / \mathrm{mi} / \mathrm{ln}$, LOS E

